Cấp số nhân là gì? Có những công thức và tính chất quan trọng cần nhớ? Bài viết này sẽ hệ thống đầy đủ nhất giúp bạn hiểu hơn về phép toán cơ bản này.
Bạn biết đấy, nhiều năm gần đây phép toán cấp số nhân được đưa vào trong đề thi tốt nghiệp trung học phổ thông vương quốc, vẫn biết nó đơn thuần nhưng có gây chút khó khăn vất vả với một vài bạn. Nếu bỏ thì thật tiếc phải không nào. Để giúp bạn học tốt, bài viết này sẽ nêu rõ định nghĩa, công thức cần học và bài tập cấp số nhân kèm giải thuật cụ thể .
Lý thuyết cấp số nhân
- Công thức tổng quát: ${u_{n + 1}} = {u_n}.q$
- Số hạng bất kì: ${u_n} = {u_1}.{q^{n – 1}}$
- Tổng n số hạng đầu tiên: ${S_n} = {u_1} + {u_2} + … + {u_n} = {u_1}\frac{{1 – {q^n}}}{{1 – q}}$
Bài tập cấp số nhân có lời giải chi tiết
Bài tập 1. Cho cấp số nhân ( ${u_n}$ ), biết công bội q = 3 và số hạng đầu tiên ${u_1}$ = 8. Hãy tìm số hạng thứ 2
Bạn đang đọc: Công thức tính tổng cấp số nhân
A. 24
B. 16
C. 32
D. 40
Hướng dẫn giải
Áp dụng công thức cấp số nhân : USD { u_ { n + 1 } } = { u_n }. q USD
- q = 3
- số hạng thứ 2: n + 1 = 2 => n = 1
- ${u_1}$ = 8
Thay số vào : USD { u_ { 1 + 1 } } = { u_1 }. q \ Rightarrow { u_2 } = 8.3 = 24 USD
Chọn đáp án A .
Bài tập 2. Cho cấp số nhân ( ${u_n}$ ), biết số hạng đầu tiên ${u_1}$ = 8 và số hạng kế tiếp ${u_2}$ = 24. Hãy tìm công bội của dãy số này
A. 6
B. 5
C. 4
D. 3
Hướng dẫn giải
Áp dụng công thức tổng quát : USD { u_ { n + 1 } } = { u_n }. q USD
- ${u_1}$ = 8
- ${u_2}$ = 24
Thay số vào : USD { u_2 } = { u_1 }. q \ Rightarrow 24 = 8. q \ Rightarrow q = \ frac { { 24 } } { 8 } = 3 USD
Chọn đáp án D .
Bài tập 3. Cho cấp số nhân ( ${u_n}$ ), biết rằng số hạng đầu tiên ${u_1}$ = 3, công bội là 2. Hãy tìm số hạng thứ 5
A. 96
B. 48
C. 24
D. 12
Hướng dẫn giải
Áp dụng công thức số hạng bất kể : USD { u_n } = { u_1 }. { q ^ { n – 1 } } USD
- ${u_1}$ = 3
- q = 2
- n = 5
Thay số vào: ${u_5} = {3.2^{5 – 1}} = 48$
Xem thêm: Làm Thế Nào Để Win 7 Chạy Nhanh Hơn
Chọn đáp án B .
Bài tập 4. Cho cấp số nhân ( ${u_n}$ ), biết công bội q = – 3 và số hạng đầu tiên ${u_1}$ = 4. Hãy tỉnh tổng của 6 số hạng đầu tiên
A. 244
B. 82
C. 122
D. 730
Hướng dẫn giải
Áp dụng công thức tính tổng của n số hạng tiên phong : USD { S_n } = { u_1 } \ frac { { 1 – { q ^ n } } } { { 1 – q } } USD
- q = – 3
- ${u_1}$ = 4
Thay số vào : USD { S_6 } = { u_1 } \ frac { { 1 – { q ^ 6 } } } { { 1 – q } } = 5. \ frac { { 1 – { { \ left ( { – 2 } \ right ) } ^ 6 } } } { { 1 – \ left ( { – 2 } \ right ) } } = 730 USD
Chọn đáp án D .
Bài tập 5. Cho cấp số nhân ( ${u_n}$ ), biết rằng ${u_1}$ = – 0,5 và số hạng thứ 7 là ${u_7}$ = – 32. Hãy tìm công bội
A. q = 2
B. q = – 2
C. q = ± 2
D. q = 3
Hướng dẫn giải
Áp dụng công thức số hạng bất kể : USD { u_n } = { u_1 }. { q ^ { n – 1 } } USD
- n = 7
- ${u_1}$ = – 0,5
- ${u_7}$ = – 32
Thay số vào : USD – 32 = \ left ( { – 0,5 } \ right ). { q ^ { 7 – 1 } } \ Rightarrow q = \ pm 2 USD
Chọn đáp án C .
Bài tập 6. Biết rằng một cấp số nhân ( ${u_n}$ ) có số hạng đầu ${u_1}$ = 8, công bội q = 2 và số hạng thứ n là ${u_n}$ = 256. Hỏi n bằng bao nhiêu
A. 4
B. 5
C. 6
D. 7
Hướng dẫn giải
Áp dụng công thức cấp số nhân : USD { u_n } = { u_1 }. { q ^ { n – 1 } } USD
- ${u_1}$ = 8
- q = 2
- ${u_n}$ = 256
Thay số vào : USD 256 = 8. { q ^ { n – 1 } } \ Rightarrow { q ^ { n – 1 } } = 32 \ Rightarrow { q ^ { n – 1 } } = { 2 ^ 5 } USD
=> n – 1 = 5=> n = 6
Chọn đáp án C .
Hy vọng bài viết này đã giúp ích bạn học tốt phép toán cơ bản cấp số nhân, nếu có thắc mắc gì hãy comment bên dưới để toanhoc.org giải đáp giúp bạn.
Source: http://wp.ftn61.com
Category: Thủ Thuật
Để lại một bình luận