Tóm tắt nội dung bài viết
- Cách Kiểm Tra Nghiệm Của Phương Trình Lượng Giác Đặc Biệt, Nghiệm Của Các Phương Trình Lượng Giác Đặc Biệt
- I. Hệ thống kiến thức về lượng giác để làm đề kiểm tra 1 tiết toán 11 chương 1 đại số
- 1. Hàm số lượng giác
- 2. Phương trình lượng giác
- II. Ma trận của đề kiểm tra 1 tiết toán 11 chương 1 đại số
- 1. Hàm số lượng giác
- 2. Phương trình lượng giác cơ bản:
- 3. Một số phương trình thường gặp
- III. Tổng hợp đề kiểm tra 1 tiết toán 11 chương 1 đại số
- Điều hướng bài viết
Cách Kiểm Tra Nghiệm Của Phương Trình Lượng Giác Đặc Biệt, Nghiệm Của Các Phương Trình Lượng Giác Đặc Biệt
Kiểm tra 1 tiết là một trong những bài kiểm tra quan trọng trong chương trình giáo dục phổ thông bởi nó được tính hệ số 2 trong các cột điểm. Nhằm giúp các em học sinh ôn tập và hệ thống lại kiến thức chương 1 phần đại số: lượng giác, Kiến Guru đã tuyển chọn một số đề kiểm tra 1 tiết toán 11 chương 1 đại số kèm đáp án của một số trường THPT trên cả nước. Đây là một tài liệu tham khảo hữu ích cho các em chuẩn bị cho bài kiểm tra sắp tới.
Đang xem : Cách kiểm tra nghiệm của phương trình lượng giác
I. Hệ thống kiến thức về lượng giác để làm đề kiểm tra 1 tiết toán 11 chương 1 đại số
Để làm tốt đề kiểm tra 1 tiết toán 11 chương 1 đại số, các em cần nắm vững các kiến thức về hàm số lượng giác và phương trình lượng giác. Các kiến thức này được tóm gọn ở các vấn đề sau:
Bạn đang đọc: Cách Kiểm Tra Nghiệm Của Phương Trình Lượng Giác Đặc Biệt, Nghiệm Của Các Phương Trình Lượng Giác Đặc Biệt
1. Hàm số lượng giác
– Khái niệm
– Tập xác lập
– Tập giá trị
– Tính tuần hoàn
– Sự biến thiên
– Dạng đồ thị
2. Phương trình lượng giác
– Phương trình lượng giác cơ bản
+ sinx = a
+ cosx = a
+ tanx = a
+ cotx = a
– Phương trình lượng giác cần gặp
+ Phương trình bậc nhất với một hàm số lượng giác
+ Phương trình bậc hai với sinx, cosx, tanx, cotx
+ Phương trình bậc nhất với sinx và cosx
II. Ma trận của đề kiểm tra 1 tiết toán 11 chương 1 đại số
Đề kiểm tra 1 tiết toán 11 chương 1 đại số thường bao gồm 20 – 30 câu hỏi trắc nghiệm.Phần trắc nghiệm: hàm số lượng giác và phương trình lượng giác thường sẽ có 3 dạng câu hỏi phân loại học sinh bao gồm: nhận biết, thông hiểu và vận dụng cao. Cụ thể như sau:
1. Hàm số lượng giác
– Nhận biết
+ Tìm chu kỳ luân hồi của những hàm số y = sinx và y = cosx
+ Tìm tập xác lập của những hàm số y = tanx và y = cotx
+ Tìm tập giá trị của những hàm số y = sinx và y = cosx
Ví dụ: Chu kỳ tuần hoàn của hàm số y = sinx là:
A. 2 π B. π / 2 C. π D. k2π, k ∈ Z
Hướng dẫn : Hàm số y = sinx có chu kỳ luân hồi tuần hoàn là 2 π .
Đáp án : A
– Thông hiểu
+ Tìm khoảng chừng đồng biến và nghịch biến của những hàm số y = sinx và y = cosx
+ Ví dụ: Hàm số y = sin2x nghịch biến trên khoảng nào sau đây?
A. ( 0 ; π ) B. ( π / 2 ; 3 π / 2 ) C. ( π / 4 ; 3 π / 4 ) D. ( – π / 4 ; π / 4 )
Hướng dẫn : Khoảng nghịch biến của hàm số y = sin2x là ( π / 4 ; 3 π / 4 ) .
Đáp án : C
– Vận dụng cao :
+ Tìm giá trị lớn nhất và giá trị nhỏ nhất của những hàm số lượng giác chứa tham số .
+ Ví dụ: Cho hàm số ; ∈ (0; π/2). Gọi M và m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số này. Tính giá trị của M + m.
A. 1 B. – 1 C. 0 D. sinα
Hướng dẫn : Tìm GTLN của hàm số và GTNN của hàm số nhờ – 1 ≤ sinx ≤ 1 .
Đáp án : C
2. Phương trình lượng giác cơ bản:
– Nhận biết
+ Tìm nghiệm của những phương trình tanx = tana ; cotx = cota
+ Tìm nghiệm của những phương trình sinx = a ; cosx = a .
+ Ví dụ: Tất cả các nghiệm của phương trình sinx = 1 là:
A. x = π/2 + kπ, k ∈ Z
B. x = π / 2 + k2π, k ∈ Z
C. x = kπ, k ∈ Z
D. x = – π / 2 + kπ, k ∈ Z
Hướng dẫn : Nghiệm của phương trình sinx = 1 là x = π / 2 + k2π, k ∈ Z. Đáp án : B
Thông hiểu:
+ Tìm điều kiện kèm theo có nghiệm của phương trình sinx = f ( m ) ; cosx = g ( m ) .
Xem thêm : Tải Mẫu Văn Bản Giải Trình Vi Phạm Hành Chính Áp Dụng Trong Trường Hợp Nào ?
+ Tìm nghiệm của phương trình dạng tan f ( x ) = tan g ( x ), cot f ( x ) = cot g ( x ) .
+ Tìm số điểm trình diễn những nghiệm của một phương trình sin f ( x ) = sin g ( x ) ; cos f ( x ) = cos g ( x ) trên đường tròn lượng giác .
+ Ví dụ: Có bao nhiêu giá trị nguyên của tham số m để phương trình cosx = m+1 có nghiệm?
A. 3 B. 1 C. 5 D. Vô số
Hướng dẫn : Phương trình cosx = m + 1 có nghiệm khi – 1 ≤ cosx ≤ 1. Vậy m có 3 giá trị nguyên là : – 2 ; – 1 ; 0. Đáp án : A
3. Một số phương trình thường gặp
– Nhận biết
+ Phương trình bậc hai với một hàm số lượng giác
+ Ví dụ: Cho phương trình 2sin2x+ 3sinx-1 =0. Đặt sinx = t, t ∈ ta được phương trình nào dưới đây?
A. 7 t – 1 = 0
B. 5 t – 1 = 0
C. 2 t2 + 3 t – 1 = 0
D. 4 t2 + 3 t – 1 = 0
Hướng dẫn : Chọn đáp án C
– Thông hiểu
+ Tìm nghiệm của một phương trình biến hóa về phương trình bậc hai với sinx, và cosx .
+ Tìm điều kiện kèm theo tương quan đến nghiệm của phương trình đưa về bậc nhất với sinx và cos x
+ Tìm điều kiện kèm theo để phương trình bậc nhất với sinx, cosx có nghiệm
+ Ví dụ: Tìm nghiệm của phương trình sin2x- 2cosx-1 = 0
A. x = kπ
B. Vô nghiệm
C. x = π / 2 + kπ, k ∈ Z
D. x = π / 2 + k2π, k ∈ Z
Hướng dẫn : Thay sin2x = 1 – cos2x vào phương trình trên ta được : – cos2x – 2 cosx = 0, đặt t = cosx, t và giải phương trình bậc 2 này. Ta tính được nghiệm x = / 2 + kπ, k ∈ Z. Đáp án : C
– Vận dụng
Tìm nghiệm dương nhỏ nhất của phương trình lượng giác .
III. Tổng hợp đề kiểm tra 1 tiết toán 11 chương 1 đại số
Chúng tôi đã tổng hợp một số đề kiểm tra 1 tiết toán 11 chương 1 đại số kèm đáp án chi tiết trên toàn quốc. Các em hãy tham khảo các đề kiểm tra này nhé.
Xem thêm : Hàm Thêm Dấu Chấm Trong Excel, Hàm Thêm Dấu Chấm Trong 1 Dãy Số
Để tải nhiều đề kiểm tra 1 tiết toán chương 1 đại số, click vào đây để tải đề ngay
Trên đây là các đề kiểm tra 1 tiết toán 11 chương 1 đại số: Hàm số lượng giác và phương trình lượng giác. Hy vọng tài liệu này là nguồn tham khảo bổ ích cho các em cho bài kiểm tra sắp tới. Chúc các em đạt được kết quả tốt nhất.
Xem thêm bài viết thuộc chuyên mục: Phương trình
Điều hướng bài viết
Source: http://wp.ftn61.com
Category: Hỏi Đáp
Để lại một bình luận