Lý thuyết cần nắm:
1. Diện tích của hình tròn và của hình elíp
a. Hình tròn bán kính $R$ có diện tích $S = \pi {R^2}.$
b. Hình elíp $\left( E \right)$: $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ có diện tích $S = \pi ab.$
2. Tính diện tích hình phẳng giới hạn bởi các đường cong
a. Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = f\left( x \right)$ ($f\left( x \right)$ liên tục trên đoạn $\left[ {a;b} \right]$), trục $Ox$ và hai đường thẳng $x = a$ và $x = b$ được cho bởi công thức: $S = \int\limits_a^b {\left| {f(x)} \right|dx} .$
b. Diện tích hình phẳng giới hạn bởi hai đường thẳng $x = a$, $x = b$ và đồ thị của hai hàm số $y = {f_1}\left( x \right)$ và $y = {f_2}\left( x \right)$ (${f_1}\left( x \right)$ và ${f_2}\left( x \right)$ liên tục trên đoạn $\left[ {a;b} \right]$) được cho bởi công thức: $S = \int\limits_a^b {\left| {{f_1}(x) – {f_2}(x)} \right|dx} .$
Dạng 1: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = f\left( x \right)$ (liên tục trên đoạn $\left[ {a;b} \right]$), trục hoành và hai đường thẳng $x = a$, $x = b$ và trục $Ox$
+ Bước 1: Gọi $S$ là diện tích cần xác định, ta có: $S = \int\limits_a^b {\left| {f(x)} \right|dx} .$
+ Bước 2: Xét dấu biểu thức $f\left( x \right)$ trên $\left[ {a;b} \right]$. Từ đó phân được đoạn $\left[ {a;b} \right]$ thành các đoạn nhỏ, giả sử: $\left[ {a;b} \right]$ $ = \left[ {a;{c_1}} \right] \cup \left[ {{c_1};{c_2}} \right] \cup … \cup \left[ {{c_k};b} \right]$ mà trên mỗi đoạn $f\left( x \right)$ chỉ có một dấu.
+ Bước 3: Khi đó: $S = \int\limits_a^{{c_1}} {\left| {f(x)} \right|} dx + \int\limits_{{c_1}}^{{c_2}} {\left| {f(x)} \right|} dx$ $ + … + \int\limits_{{c_k}}^b {\left| {f(x)} \right|} dx.$
Chú ý: Nếu bài toán phát biểu dưới dạng: “Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số $x = {\rm{ }}f\left( y \right)$ (liên tục trên đoạn $\left[ {a;b} \right]$) hai đường thẳng $y = a$, $y = b$ và trục $Oy$”, khi đó công thức tính diện tích là: $S = \int\limits_a^b {\left| {f(y)} \right|dy} .$
Bạn đang đọc: Ứng dụng tích phân tính diện tích hình phẳng
Ví dụ 1: Tính diện tích hình phẳng giới hạn bởi:
a. Đồ thị hàm số $y = cosx + 1$, trục hoành và hai đường thẳng $x = 0$ và $x = \frac{{2\pi }}{3}.$
b. Đồ thị hàm số $y = {x^3} – 1$, trục hoành, trục tung và đường thẳng $x = 2.$
a. Ta có: $S = \int\limits_0^{2\pi /3} {\left| {co{\mathop{\rm s}\nolimits} x + 1} \right|dx} $ $ = \int\limits_0^{2\pi /3} {(co{\mathop{\rm s}\nolimits} x + 1)dx} $ $ = \left( {\sin x + x} \right)\left| {_0^{2\pi /3}} \right.$ $ = \frac{{\sqrt 3 }}{2} + \frac{{2\pi }}{3}.$
b. Ta có: $S = \int\limits_0^2 {\left| {{x^3} – 1} \right|dx} .$
Xét hàm số: $f\left( x \right) = {x^3} – 1$ trên đoạn $\left[ {0;2} \right]$, ta có: ${x^3} – 1 = 0$ $ \Leftrightarrow (x – 1)\left( {{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right) = 0$ $ \Leftrightarrow x{\rm{ }} = {\rm{ }}1.$
Bảng xét dấu:
Khi đó : USD S = \ int \ limits_0 ^ 1 { \ left | { { x ^ 3 } – 1 } \ right | dx } + \ int \ limits_1 ^ 2 { \ left | { { x ^ 3 } – 1 } \ right | dx } USD USD = \ int \ limits_0 ^ 1 { \ left ( { 1 – { x ^ 3 } } \ right ) dx } + \ int \ limits_1 ^ 2 { \ left ( { { x ^ 3 } – 1 } \ right ) dx } USD USD = \ left ( { x – \ frac { { { x ^ 4 } } } { 4 } } \ right ) \ left | { _0 ^ 1 } \ right. + \ left ( { \ frac { { { x ^ 4 } } } { 4 } – x } \ right ) \ left | { _1 ^ 2 } \ right. = \ frac { 7 } { 2 }. USD
Nhận xét: Như vậy, để tính các diện tích hình phẳng trên:
+ Ở câu 1.a chúng ta chỉ việc sử dụng công thức cùng với nhận xét $cosx + 1 \ge 0$ để phá dấu trị tuyệt đối. Từ đó, nhận được giá trị của tích phân.
+ Ở câu 1.b chúng ta cần xét dấu đa thức ${x^3} – 1$ trên đoạn $\left[ {0;2} \right]$, để từ đó tách tích phân $S$ thành các tích phân nhỏ mà trên đó biểu thức ${x^3} – 1$ không âm hoặc không dương.
Xem thêm: Điều Trị Hôi Miệng Dứt Điểm Tại Nhà
Ví dụ 2: Tính diện tích hình phẳng giới hạn bởi:
a. Đồ thị hàm số $y = – {x^2} + 3x – 2$ và trục hoành.
b. Đồ thị hàm số $y = {x^3} – 2{x^2} – x + 2$ và trục hoành.
a. Ta có hoành độ giao điểm của đồ thị hàm số $y = – {x^2} + 3x – 2$ và trục hoành là:
$ – {x^2} + 3x – 2 = 0$ $ \Leftrightarrow x = 1$ hoặc $x = 2.$
Khi đó: $S = \int\limits_1^2 {\left| { – {x^2} + 3x – 2} \right|dx} $ $ = \int\limits_1^2 {\left( { – {x^2} + 3x – 2} \right)dx} $ $ = \left. {\left( { – \frac{1}{3}{x^3} + \frac{3}{2}{x^2} – 2x} \right)} \right|_1^2$ $ = \frac{1}{6}.$
b. Ta có hoành độ giao điểm của đồ thị hàm số $y = {x^2} – 2x$ và trục hoành là:
${x^3} – 2{x^2} – x + 2{\rm{ }} = 0$ $ \Leftrightarrow (x – 1)({x^2} – x – 2) = 0$ $ \Leftrightarrow x = \pm 1$ hoặc $x = 2.$
Khi đó: $S = \int\limits_{ – 1}^2 {\left| {{x^3} – 2{x^2} – x + 2} \right|dx} $ $ = \int\limits_{ – 1}^1 {\left| {{x^3} – 2{x^2} – x + 2} \right|dx} $ $ + \int\limits_1^2 {\left| {{x^3} – 2{x^2} – x + 2} \right|dx} $
$ = \int\limits_{ – 1}^1 {\left( {{x^3} – 2{x^2} – x + 2} \right)dx} $ $ + \int\limits_1^2 {\left( { – {x^3} + 2{x^2} + x – 2} \right)dx} $
$ = \left. {\left( {\frac{1}{4}{x^4} – \frac{2}{3}{x^3} – \frac{1}{2}{x^2} + 2x} \right)} \right|_{ – 1}^1$ $ + \left. {\left( { – \frac{1}{4}{x^4} + \frac{2}{3}{x^3} + \frac{1}{2}{x^2} – 2x} \right)} \right|_1^2$ $ = 3.$
Nhận xét: Như vậy, để tính các diện tích hình phẳng trên chúng ta đều cần tìm được hai cận $a$, $b$ của tích phân và:
+ Ở câu 2.a vì phương trình hoành độ chỉ có hai nghiệm nên hàm số dưới dấu tích phân chỉ có một dấu.
+ Ở câu 2.b vì phương trình hoành độ có ba nghiệm nên tích phân $S$ cần được tách thành hai tích phân nhỏ.
[ads]
Dạng toán 2: Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số $y = f\left( x \right)$, $y = g\left( x \right)$ (liên tục trên đoạn $\left[ {a;b} \right]$) hai đường thẳng $x = a$, $x = b$
+ Bước 1: Gọi $S$ là diện tích cần xác định, ta có: $S = \int\limits_a^b {\left| {f(x) – g(x)} \right|dx} .$
+ Bước 2: Xét dấu biểu thức $f\left( x \right) – g\left( x \right)$ trên $\left[ {a;b} \right]$. Từ đó phân được đoạn $\left[ {a,b} \right]$ thành các đoạn nhỏ, giả sử: $\left[ {a;b} \right]$ $ = \left[ {a;{c_1}} \right] \cup \left[ {{c_1};{c_2}} \right] \cup … \cup \left[ {{c_k};b} \right]$ mà trên mỗi đoạn $f\left( x \right) – g\left( x \right)$ chỉ có một dấu.
+ Bước 3: Khi đó: $S = I = \int\limits_a^{{c_1}} {\left| {f(x) – g(x)} \right|} dx + $ $… + \int\limits_{{c_k}}^b {\left| {f(x) – g(x)} \right|} dx .$
Chú ý: Nếu bài toán phát biểu dưới dạng: “Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số $x = {f_1}\left( y \right)$ và $x = {f_2}\left( y \right)$ (liên tục trên đoạn $\left[ {a;b} \right]$) và hai đường thẳng $y = a$, $y = b$ và trục $Oy$”, khi đó công thức tính diện tích là: $S = \int\limits_a^b {\left| {{f_1}(y) – {f_2}(y)} \right|dy} .$
Ví dụ 3: Tính diện tích hình phẳng giới hạn bởi:
a. Đồ thị các hàm số $y = 4-{x^2}$, $y = -x + 2.$
b. Đồ thị các hàm số $y = lnx$, $y = -lnx$ và $x = e.$
Xem thêm: Hôi Chân Nên Và Không Nên Ăn Gì
a. Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:
$4–{x^2} = –x + 2$ $ \Leftrightarrow {x^2} – x – 2 = 0$ $ \Leftrightarrow x = – 1$ hoặc $x = 2.$
Khi đó: $S = \int\limits_{ – 1}^2 {\left| {{x^2} – x – 2} \right|dx} $ $ = – \int\limits_{ – 1}^2 {\left( {{x^2} – x – 2} \right)dx} $ $ = – \left. {\left( {\frac{1}{3}{x^3} – \frac{1}{2}{x^2} – 2x} \right)} \right|_{ – 1}^2$ $ = \frac{{27}}{6}.$
b. Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:
$lnx = -lnx$ $ \Leftrightarrow 2lnx = 0$ $ \Leftrightarrow lnx = 0$ $ \Leftrightarrow x = 1.$
Khi đó: $S = \int\limits_1^e {\left| {\ln x + \ln x} \right|dx} $ $ = 2\int\limits_1^e {\ln x.dx} .$
Đặt: $\left\{ \begin{array}{l}
u = \ln x\\
dv = dx
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
du = \frac{{dx}}{x}\\
v = x
\end{array} \right.$ $ \Rightarrow S = 2\left( {\left. {x.\ln x} \right|_1^e – \int\limits_1^e {dx} } \right)$ $ = 2\left( {e – \left. x \right|_1^e} \right)$ $ = 2.$
Ví dụ 4: Cho hàm số: $\left( C \right)$: $y = \frac{{{x^2}}}{{{x^2} + 1}}$. Tìm $b$ sao cho diện tích hình phẳng giới hạn bởi $\left( C \right)$ và các đường thẳng $y = 1$, $x = 0$, $x = b$ bằng $\frac{\pi }{4}.$
Gọi $S$ là diện tích cần xác định, ta có:
$S = \int\limits_0^b | \frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\rm{x}}^{\rm{2}}} + 1}} – 1|dx$ $ = \frac{\pi }{4}$ $ \Leftrightarrow \int\limits_{\rm{0}}^b | \frac{{{\rm{x}}{{\rm{ }}^{\rm{2}}} – {x^2} – 1}}{{{\rm{x}}{{\rm{ }}^{\rm{2}}} + 1}}|dx$ $ = \frac{\pi }{4}$ $ \Leftrightarrow \left| {\int\limits_0^b {\frac{{dx}}{{{{\rm{x}}^{\rm{2}}} + 1}}} } \right|$ $ = \frac{\pi }{4}$ $(1).$
Đặt $x = tant$, $ – \frac{\pi }{2} < t < \frac{\pi }{2}$ $ \Rightarrow dx = \frac{{dt}}{{{{\cos }^2}t}}$ $ = \left( {1 + ta{n^2}t} \right)dt .$
Đổi cận: Với $x = 0$ thì $t = 0$, với $x = b$ thì $t = \alpha $ (với $tan\alpha = b$ và $ – \frac{\pi }{2} < \alpha < \frac{\pi }{2}$).
Khi đó: $(1) \Leftrightarrow \left| {\int\limits_0^\alpha {dt} } \right|$ $ = \frac{\pi }{4}$ $ \Leftrightarrow \left| t \right|\left| \begin{array}{l}
\alpha \\
0
\end{array} \right.$ $ = \frac{\pi }{4}$ $ \Leftrightarrow \left| \alpha \right| = \frac{\pi }{4}$ $ \Leftrightarrow b = \pm 1.$
Source: http://wp.ftn61.com
Category: Tin Tức
Để lại một bình luận