Tổng hợp các công thức về phương trình đường thẳng lớp 10 cực hay
Tổng hợp các công thức về phương trình đường thẳng lớp 10 cực hay
1. Vectơ pháp tuyến của đường thẳng
Quảng cáo
+ Vectơ n→
≠ 0→
gọi là vectơ pháp tuyến (VTPT) của ∆ nếu giá của nó vuông góc với ∆.
Nhận xét : Nếu n→
là VTPT của ∆ thì k.n→(k ≠ 0) cũng là VTPT của ∆.
+ Trong mặt phẳng tọa độ ; mọi đường thẳng đều có phương trình tổng quát dạng :ax + by + c = 0 với a2 + b2 > 0 .+ Các dạng đặc biệt quan trọng của phương trình tổng quát :- Đường thẳng by + c = 0 song song hoặc trùng với trục Ox .- Đường thẳng ax + c = 0 song song hoặc trùng với trục Oy .- Đường thẳng ax + by = 0 đi qua gốc tọa độ .
+ Đường thẳng có phương trình:
= 1 ( a ≠ 0; b ≠ 0) đi qua hai điểm A(a; 0) và B(0; b)
Phương trình trên được gọi là phương trình đường thẳng theo đoạn chắn .+ Xét đường thẳng ∆ có phương trình tổng quát : ax + by + c = 0Nếu b ≠ 0 thì phương trình trên được đưa về dạng : y = kx + m ( * )Khi đó k được gọi là thông số góc của đường thẳng ∆ và ( * ) gọi là phương trình của ∆ theo thông số góc .
Quảng cáo
2. Vị trí tương đối của hai đường thẳng
Cho hai đường thẳng : ∆ 1 = a1x + b1y + c1 = 0 ; ∆ 2 = a2x + b2y + c2 = 0Để xét vị trí tương đối của hai đường thẳng ∆ 1, ∆ 2 ta xét số nghiệm của hệ phương trình
(I)
Chú ý: Nếu a2b2c2 ≠ 0 thì :
∆1 cắt ∆2 ⇔
∆1 song song ∆2 ⇔
∆1 trùng ∆2 ⇔
1. Vectơ chỉ phương của đường thẳng
Vectơ u→ ≠ 0→ được gọi là vectơ chỉ phương (VTCP) của đường thẳng ∆ nếu giá của nó song song hoặc trùng với ∆.
Nhận xét : Nếu u→ là VTCP của ∆ thì k.u→( k ≠0) cũng là VTCP của ∆.
2. Phương trình tham số của đường thẳng
Cho đường thẳng ∆ đi qua M0 (x0; y0) và u→( a; b) là VTCP. Khi đó phương trình tham số của đường thẳng có dạng:
( 1)
Hệ ( 1 ) được gọi là phương trình tham số của đường thẳng ∆, với tham số t .
Quảng cáo
3. Phương trình chính tắc của đường thẳng
Cho đường thẳng ∆ đi qua M0 (x0; y0) và u→(a;b) (với a ≠ 0, b ≠ 0 ) là VTCP. Khi đó phương trình chính tắc của đường thẳng có dạng:
(2)
Phương trình ( 2 ) được gọi là phương trình chính tắc của đường thẳng .Nếu a = 0 hoặc b = 0 thì đường thẳng không có phương trình chính tắc .
4. Liên hệ giữa VTCP và VTPT
VTPT và VTCP vuông góc với nhau. Do đó nếu ∆ có VTCP u→( a; b) thì n→( b; -a) là một VTPT của ∆.
5. Khoảng cách từ một điểm đến một đường thẳng.
Khoảng cách từ một điểm M ( x0 ; y0 ) đến đường thẳng ∆ : ax + by + c = 0 cho bởi công thức :
d(M0, ∆) =
6. Vị trí của hai điểm đối với một đường thẳng.
Cho đường thẳng ∆ : ax + by + c = 0 và hai điểm M ( xM ; yM ) ; N ( xN ; yN ) không nằm trên ∆. Khi đó :+ Hai điểm M và N cùng phía so với ∆ khi và chỉ khi 🙁 axM + byM + c ). ( axN + byN + c ) > 0 .+ Hai điểm M và N khác phía so với ∆ khi và chỉ khi 🙁 axM + byM + c ). ( axN + byN + c ) < 0 .
7. Góc giữa hai đường thẳng.
+ Định nghĩa : Hai đường thẳng a và b cắt nhau tạo thành bốn góc. Số đo nhỏ nhất của những góc đó được gọi là số đo của góc giữa hai đường thẳng a và b .Khi a song song hoặc trùng với b, ta quy ước góc giữa chúng là 00 .Kí hiệu : ( a ; b )+ Góc giữa hai đường thẳng không vượt quá 900 nên ta có :
(a; b) = ( u→; v→) nếu ( u→; v→) ≤ 900
(a; b) = 1800 – ( u→; v→) nếu ( u→; v→) > 900
Trong đó; u→ và v→ lần lượt là VTCP của a và b.
+ Góc giữa hai đường thẳng Δ1 và Δ2 có VTPT n1→ = (a1; b1) và n2→ = (a2; b2) được tính theo công thức:
cos(Δ1, Δ2) = cos(n1→, n2→) =
Chuyên đề Toán 10 : khá đầy đủ kim chỉ nan và những dạng bài tập có đáp án khác :
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại thông minh, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi trực tuyến, Bài giảng …. không tính tiền. Tải ngay ứng dụng trên Android và iOS .
Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Theo dõi chúng tôi không lấy phí trên mạng xã hội facebook và youtube :
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
phuong-phap-toa-do-trong-mat-phang.jsp
Source: http://wp.ftn61.com
Category: Hỏi Đáp
Để lại một bình luận