Như bài học trước, chúng ta đã được tìm hiểu về các phương pháp giải toán bằng cách lập hệ phương trình rồi tìm ra bài toán, hôm nay cũng ta sẽ đi phần tiếp theo, phần này chúng ta sẽ nhấn mạnh và đi chuyên sâu hơn về các dạng bài tập mới lạ hơn.
Tóm tắt nội dung bài viết
- 1.1. Phương pháp giải
- Bước 1: Lập hệ phương trình
- Bước 2: Giải hệ phương trình
- Bước 3: So sánh kết quả tìm được và chọn nghiệm thích hợp
- 1.2. Các dạng toán cơ bản
- 2.1. Bài tập cơ bản
- 2.2. Bài tập nâng cao
- 3. Luyện tập Bài 6 Chương 3 Đại số 9
- 3.1 Trắc nghiệm Giải bài toán bằng cách lập hệ phương trình
- Câu 1:
- Câu 2:
- 3.2 Bài tập SGK Giải bài toán bằng cách lập hệ phương trình
- 4. Hỏi đáp Bài 6 Chương 3 Đại số 9
1.1. Phương pháp giải
Để giải bài toán bằng cách lập hệ phương trình, tất cả chúng ta làm theo các bước sau :
Bước 1: Lập hệ phương trình
Chọn ẩn và đặt điều kiện kèm theo cho ẩn Biểu đạt các đại lượng khác nhau theo ẩn Dựa vào đề bài toán, lập phương trình theo dạng đã học
Bước 2: Giải hệ phương trình
Bước 3: So sánh kết quả tìm được và chọn nghiệm thích hợp
1.2. Các dạng toán cơ bản
Dạng toán hoạt động Dạng toán phối hợp các đại lượng hình học Dạng toán thao tác chung 1 tập thể, thao tác cá thể Dạng toán nước chảy Dạng toán tìm số Dạng toán phối hợp vật lý, hóa học …
2.1. Bài tập cơ bản
Bài 1: Hai vật chuyển động trên một đường tròn có đường kính 2m, xuất phát cùng một lúc từ cùng một điểm. Nếu chúng chuyển động cùng chiều thì cứ 20 giây lại gặp nhau. Nếu chúng chuyển động ngược chiều thì cứ 4 giây lại gặp nhau. Tính vận tốc của mỗi vật.
Hướng dẫn:
Gọi tốc độ của vật 1 là \ ( x ( m / s ) ( x > 0 ) \ ) Gọi tốc độ của vật 2 là \ ( y ( m / s ) ( y > 0 ) \ ) Vì sau 20 s hai vật hoạt động được quãng đường lần lượt là \ ( 20 x \ ) và \ ( 20 y \ ) Chúng hoạt động cùng chiều thì cứ 20 giây gặp nhau nên ta có phương trình \ ( 20 x – 20 y = 20 \ pi \ ) Sau 4 giây hai vật hoạt động được quãng đường lần lượt là \ ( 4 x \ ) và \ ( 4 y \ ) Chúng hoạt động ngược chiều thì cứ 4 giây gặp nhau nên ta có phương trình \ ( 4 x + 4 y = 20 \ pi \ ) Vì vậy, ta có hệ \ ( \ left \ { \ begin { matrix } 20 x – 20 y = 20 \ pi \ \ 4 x + 4 y = 20 \ pi \ end { matrix } \ right. \ ) Giải hệ ta tìm ra \ ( \ left \ { \ begin { matrix } x = 3 \ pi \ \ y = 2 \ pi \ end { matrix } \ right. \ )
Bài 2: Một người dự định đi từ A đến B với thời gian đã định. Nếu người đó tăng tốc thêm \(10km/h\) thì đến B sớm hơn dự định 1 giờ. Nếu giảm vận tốc đi \(10km/h\) thì đến muộn hơn B là 2 giờ. Tính quãng đường AB.
Hướng dẫn:
Gọi tốc độ dự tính là \ ( x ( km / h ) ( x > 0 ) \ ) Gọi thời hạn dự tính là \ ( y ( h ) ( y > 0 ) \ ) Chúng ta cần tính quãng đường AB chính là \ ( x. y \ ) Theo đề : Nếu người đó tăng cường thêm \ ( 10 km / h \ ) thì đến B sớm hơn dự tính 1 giờ : \ ( ( x + 10 ) ( y-1 ) = xy \ ) Nếu giảm tốc độ đi \ ( 10 km / h \ ) thì đến muộn hơn B là 2 giờ : \ ( ( x-10 ) ( y + 2 ) = xy \ ) Giải hệ 2 phương trình trên, ta được : \ ( \ left \ { \ begin { matrix } x = 30 \ \ y = 4 \ end { matrix } \ right. \ ) Vậy quãng đường AB là \ ( 120 km \ )
Bài 3: Một thửa ruộng hình chữ nhật có chu vi là \(250m\). Tính diện tích của thửa ruộng ấy biết rằng dài giảm 3 lần và rộng tăng 2 lần thì chu vi không đổi.
Hướng dẫn: Gọi chiều rộng và chiều dài của thửa ruộng đó lần lượt là \(x,y(<0x
Theo đề, ta có hệ phương trình : \ ( \ left \ { \ begin { matrix } x + y = \ frac { 250 } { 2 } \ \ 2 x + \ frac { y } { 3 } = \ frac { 250 } { 2 } \ end { matrix } \ right. \ ) Giải hệ ta được \ ( \ left \ { \ begin { matrix } x = 50 \ \ y = 75 \ end { matrix } \ right. \ ) Vậy diện tích quy hoạnh thửa ruông là \ ( xy = 50.75 = 3750 ( m ^ 2 ) \ )
2.2. Bài tập nâng cao
Bài 1: Cho tam giác vuông, biết rằng tăng mỗi cạnh góc vuông lên \(2cm\) thì diện tích tăng lên \(17cm^2\). Nếu giảm lần lượt các cạnh góc vuông một cạnh \(3cm\), một cạnh \(1cm\) thì diện tích giảm đi \(11cm^2\). Tìm các cạnh của tam giác vuông đó.
Hướng dẫn: Gọi hai cạnh góc vuông là \(x,y(x\geq y>3)\)
Theo đề : tăng mỗi cạnh góc vuông lên \ ( 2 cm \ ) thì diện tích quy hoạnh tăng lên \ ( 17 cm ^ 2 \ ), ta có phương trình : \ ( \ frac { 1 } { 2 } ( x + 2 ) ( y + 2 ) = \ frac { 1 } { 2 } xy + 17 \ ) Giảm lần lượt các cạnh góc vuông một cạnh \ ( 3 cm \ ), một cạnh \ ( 1 cm \ ) thì diện tích quy hoạnh giảm đi \ ( 11 cm ^ 2 \ ), ta có phương trình :
\(\frac{1}{2}(x-3)(y-1)=\frac{1}{2}xy-11\)
Giải hệ hai phương trình ta có : \ ( \ left \ { \ begin { matrix } x + y = 15 \ \ x-3y = 25 \ end { matrix } \ right. \ ) \ ( \ Rightarrow \ left \ { \ begin { matrix } x = 5 \ \ y = 10 \ end { matrix } \ right. \ ) Vậy độ dài 3 cạnh của tam giác đó là \ ( 5 ; 10 ; 5 \ sqrt { 5 } ( cm ) \ )
Bài 2: Tìm số tự nhiên có hai chữ số, biết rằng chữ số hàng đơn vị nhỏ hơn chữ số hàng chục là 2, tích của hai chữ số đó lớn hơn tổng của chúng là 34.
Hướng dẫn: Gọi số cần tìm là \(\bar{ab}\), theo đề, ta có:
\ ( \ left \ { \ begin { matrix } a-b = 2 \ \ ab = a + b + 34 \ end { matrix } \ right. \ ) Giải hệ trên, ta tìm được số cần tìm là 86
3. Luyện tập Bài 6 Chương 3 Đại số 9
Qua bài giảng Giải bài toán bằng cách lập hệ phương trình (tiếp theo) này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
- Nắm rõ các bước giải bài toán bằng cách lập hệ hệ phương trình
- Nhận biết được một số dạng toán thường gặp
3.1 Trắc nghiệm Giải bài toán bằng cách lập hệ phương trình
Để cũng cố bài học kinh nghiệm xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 6 để kiểm tra xem mình đã nắm được nội dung bài học kinh nghiệm hay chưa.
-
Câu 1:
Hai vòi nước chảy chung vào một bể thì sau \ ( 4 \ frac { 4 } { 5 } \ ) giờ thì đầy bể. Mỗi giờ, lượng nước vòi I chảy bằng \ ( \ frac { 3 } { 2 } \ ) lượng nước ở vòi II. Vậy mỗi vòi chảy riêng thì bao lâu đầy bể ?
- A .
Vòi I là 8 h, vòi II là 12 giờ - B .
Vòi I là 12 h, vòi II là 8 giờ - C .
Vòi I là 12 h, vòi II là 16 giờ - D .
Vòi I là 16 h, vòi II là 12 giờ
- A .
-
Câu 2:
Trong tháng đầu, hai tổ công nhân sản xuất 800 cụ thể máy. Sang tháng thứ hai, tổ I vượt mức 15 %, tổ II vượt mức 20 %. Vì vậy đã sản xuất được 945 chi tiết cụ thể máy. Vậy trong tháng đầu, mỗi tổ công nhân sản xuất được :
- A .
\ ( 600 ; 400 \ ) - B .
\ ( 400 ; 600 \ ) - C .
\ ( 300 ; 500 \ ) - D .
\ ( 500 ; 300 \ )
- A .
Câu 3-5 : Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kỹ năng và kiến thức và nắm vững hơn về bài học kinh nghiệm này nhé !
3.2 Bài tập SGK Giải bài toán bằng cách lập hệ phương trình
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 6 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 2
Bài tập 31 trang 22 SGK Toán 9 Tập 2 Bài tập 32 trang 23 SGK Toán 9 Tập 2 Bài tập 33 trang 24 SGK Toán 9 Tập 2 Bài tập 34 trang 24 SGK Toán 9 Tập 2 Bài tập 35 trang 24 SGK Toán 9 Tập 2 Bài tập 36 trang 24 SGK Toán 9 Tập 2 Bài tập 37 trang 24 SGK Toán 9 Tập 2 Bài tập 38 trang 24 SGK Toán 9 Tập 2 Bài tập 39 trang 25 SGK Toán 9 Tập 2
4. Hỏi đáp Bài 6 Chương 3 Đại số 9
Nếu có vướng mắc cần giải đáp các em hoàn toàn có thể để lại câu hỏi trong phần Hỏi đáp, hội đồng Toán LuatTreEm sẽ sớm vấn đáp cho các em. Đăng bởi : Blog LuatTreEm Chuyên mục : Giáo dục đào tạo, Lớp 9
Source: http://wp.ftn61.com
Category: Hỏi Đáp
Để lại một bình luận