Nội dung bài viết Viết phương trình tổng quát của đường thẳng:
Viết phương trình tổng quát của đường thẳng. Để lập phương trình tổng quát của đường thẳng ∆ ta cần xác định một điểm M (x0; y0) thuộc ∆ và một véc-tơ pháp tuyến n = (A; B). Vậy phương trình đường thẳng ∆: A (x − x0) + B (y − y0) = 0. Vậy phương trình tổng quát đường thẳng ∆: Ax + By = C với C = − (Ax0 + By0). BÀI TẬP DẠNG 2 Ví dụ 1. Trong mặt phẳng Oxy, viết phương trình tổng quát đường thẳng ∆ đi qua điểm M(−1; 5) và có véc-tơ pháp tuyến n = (−2; 3). Lời giải. Phương trình đường thẳng ∆: −2(x + 1) + 3(y − 5) = 0 ⇔ −2x + 3y − 17 = 0. Vậy phương trình tổng quát đường thẳng ∆: −2x + 3y − 17 = 0.
Ví dụ 2. Trong mặt phẳng Oxy, viết phương trình tổng quát đường thẳng ∆ đi qua điểm N(2; 3) và vuông góc với đường thẳng AB với A(1; 3), B(2; 1). Lời giải. Ta có: AB = (1; −2). Đường thẳng ∆ qua N(2; 3) và nhận AB = (1; −2) làm véc-tơ pháp tuyến. Phương trình đường thẳng ∆: (x − 2) − 2(y − 3) = 0 ⇔ x − 2y + 4 = 0. Vậy phương trình tổng quát đường thẳng ∆ : x − 2y + 4 = 0.
Ví dụ 3. Trong mặt phẳng Oxy, viết phương trình tổng quát của đường thẳng d đi qua A(−1; 2) và vuông góc với đường thẳng M: 2x − y + 4 = 0. Cách 1: Phương trình đường thẳng d có dạng: x + 2y + C = 0. Vì d đi qua A(−1; 2) nên ta có phương trình: −1 + 2.2 + C = 0 ⇔ C = −3. Vậy phương trình tổng quát đường thẳng của đường thẳng d: x + 2y − 3 = 0. Cách 2: Đường thẳng M có một véc-tơ chỉ phương u = (1; 2). Vì d vuông góc với M nên d nhận u = (1; 2) làm véc-tơ pháp tuyến. Phương trình đường thẳng d: (x + 1) + 2(y − 2) = 0 ⇔ x + 2y − 3 = 0. Ví dụ 4. Trong mặt phẳng Oxy, cho đường thẳng ∆: x = −2t, y = 1 + t và ∆: x = −2 − t, y = t. Viết phương trình tham số của đường thẳng d đối xứng với ∆ qua ∆.
BÀI TẬP TỰ LUYỆN Bài 1. Cho đường thẳng ∆ có phương trình tham số: x = 1 + 2t, y = −3 − t. a) Viết phương trình tổng quát của đường thẳng ∆. b) Viết phương trình tổng quát của đường thẳng l đi qua điểm N (4; 2) và vuông góc với ∆. a) Đường thẳng ∆ có vecto chỉ phương là u = (2; −1) nên có véc-tơ pháp tuyến là n = (1; 2). Chọn tham số t = 0 ta có ngay điểm A (1; −3) nằm trên ∆. Phương trình tổng quát của đường thẳng ∆ là: 1.(x − 1) + 2. [y − (−3)] = 0 ⇔ x + 2y − 5 = 0 b) Đường thẳng l vuông góc với ∆ nên có vecto pháp tuyến là nl = (2; −1). Phương trình tổng quát của đường thẳng l là: 2 (x − 4) − 1 (y − 2) = 0 ⇔ 2x − y − 6 = 0
Bài 2. Trong mặt phảng Oxy, cho đường thẳng d có hệ số góc bằng −3 và A (1; 2) nằm trên d. Lập phương trình tổng quát của đường thẳng d. Lời giải. Đường thẳng dcó hệ số góc bằng −3 nên có vec-tơ pháp tuyến là (3; 1). Đường thẳng d đi qua điểm A (1; 2) và có vec-tơ pháp tuyến là (3; 1) nên có phương trình tổng quát là: 3 (x − 1) + 1 (y − 2) = 0 ⇔ 3x + y − 5 = 0 Bài 3. Trong mặt phẳng Oxy, viết phương trình tổng quát của đường thẳng d đi qua A (2; −5) và nó tạo với trục Ox một góc 60◦. Lời giải. Hệ số góc của đường thẳng d là k = tan 60◦ = √3. Phương trình đường thẳng d là: y = √3 (x − 2) − 5 ⇔ √3x − 3y − 15 − 2√3 = 0.
Bài 4. Trong mặt phẳng Oxy, cho đường thẳng d: y = 2x + 1, viết phương trình đường thẳng d0 đi qua điểm B là điểm đối xứng của điểm A (0; −5) qua đường thẳng d và song song với đường thẳng y = −3x + 2. Đường thẳng AB vuông góc với đường thẳng d nên ta có: kAB.2 = −1 ⇔ kAB = − 1. Phương trình đường thẳng AB là: y = − 1(x − 0) − 5 ⇔ y = − 1x − 5. Vì A và B đối xứng nhau qua đường thẳng d nên trung điểm N của chúng sẽ là giao điểm của hai đường thẳng d và AB. Suy ra tọa độ của điểm N là nghiệm của hệ phương trình: y = 2x + 1, y = − x − 5 ⇔ y = −3x − 17.
Bài 5. Trong mặt phẳng Oxy, cho đường thẳng d : 2x − 3y + 1 = 0 và điểm A (−1; 3). Viết phương trình đường thẳng d0 đi qua A và cách điểm B (2; 5) khoảng cách bằng 3. Bài 6. Trong mặt phẳng Oxy, viết phương trình đường thẳng đi qua điểm M (2; 5) và cách đều A (−1; 2) và B (5; 4). Gọi phương trình đường thẳng d cần tìm là ax + by + c = 0 (a2 + b2 khác −1) (1). Do M (2; 5) ∈ d nên ta có: 2a + 5b + c = 0 ⇔ c = −2a − 5b. Thay c = −2a − 5b vào (1) ta có phương trình đường thẳng d trở thành: ax + by − 2a − 5b = 0 (2). Vì d cách đều hai điểm A và B. Trường hợp 1: Với b = 0 thay vào (2) ta được phương trình đường thẳng d là: ax + 0y − 2a − 5.0 = 0 ⇔ ax − 2a = 0 ⇔ x − 2 = 0. Trường hợp 2: Với b = −3a ta chọn a = 1, b = −3 thay vào (2) ta được phương trình đường thẳng d là: 1x − 3y − 2 − 5.(−3) = 0 ⇔ x − 3y + 13 = 0.
Source: http://wp.ftn61.com
Category: Hỏi Đáp
Để lại một bình luận